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A Fourier spectral embedded boundary method, for solution of the Poisson’s equation with
Dirichlet boundary conditions and arbitrary forcing functions (including zero forcing func-
tion), is presented in this paper. This iterative method begins by transformation of the Dirich-
let boundary conditions from the physical boundaries to some corresponding regular grid
points (which are called the numerical boundaries), using a second order interpolation
method. Then the transformed boundary conditions and the forcing function are extended
to a square, smoothly and periodically, via multiplying them by some suitable error func-
tions. Instead of direct solution of the resulting extended Poisson’s problem, it is suggested
to define and solve an equivalent transient diffusion problem on the regular domain, until
achievement of the steady solution (which is considered as the solution of the original prob-
lem). Without need of any numerical time integration method, time advancement of the
solution is obtained directly, from the exact solution of the transient problem in the Fourier
space. Consequently, timestep sizes can be chosen without stability limitations, which it
means higher rates of convergence in comparison with the classical relaxation methods.
The method is presented in details for one- and two-dimensional problems, and a new
emerged phenomenon (which is called the saturation state) is illustrated both in the physical
and spectral spaces. The numerical experiments have been performed on the one- and two-
dimensional irregular domains to show the accuracy of the method and its superiority (from
the rate of convergence viewpoint) to the other classical relaxation methods. Capability of
the method, in dealing with complex geometries, and in presence of discontinuity at the
boundaries, has been shown via some numerical experiments on a four-leaf shape geometry.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the embedded boundary methods (EBM), a domain X with irregular boundary oX (where the solution is sought on it), is
surrounded with a bigger domain D with regular boundaries (coinciding with the considered coordinate axes). Then the
problem is extended from the irregular domain X to the whole of the regular domain D, and solution of the extended prob-
lem is obtained by the use of high efficiency numerical methods. A typical drawing for a two-dimensional Cartesian grid is
shown in Fig. 1.

Although suggestion of such methods has a long history which returns to the early days of numerical methods [7], just
recently (because of some deficiencies of the conventional structured and unstructured grids in dealing with the moving
boundary and multi-body problems, multiphase flows and so forth), these methods have become in the center of attention
of many academic, as well as applied researchers [2,10,16,12,18].
. All rights reserved.
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Fig. 1. Regular and irregular (physical) boundaries and the corresponding numerical boundary (generated for a typical uniform Cartesian grid), for a two-
dimensional problem.
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In this context, the fast Fourier transform-based (FFT-based) methods, which formally are OðN log NÞ, can be considered as
the efficient methods for solution of the extended problems. Nevertheless, use of these methods in the EBM have been con-
sidered just recently, mainly because of their drawbacks in facing with discontinuities and their intrinsic restrictions in
implementation of the general boundary conditions [2,4,6]. Prior to these works almost all of the spectral methods, sug-
gested for the general irregular boundaries, employed a kind of the spectral element methods, or the boundary element
methods in implementation of the Dirichlet boundary conditions [1,8].

The FFT-based embedded boundary solution of the Poisson’s equation with homogeneous Neumann boundary condition
and without any boundary condition (by appropriate extension of the forcing function), have been proposed in [2,4,6],
respectively. The present article, as a generalization to these methods, is devoted to the Fourier embedded boundary solution
of the Poisson’s problem with Dirichlet boundary conditions.

In addition to their wide applications in the diffusion and filtering problems and the domain decomposition
methods, these problems have a crucial role in the fluid flow simulations. In fact, the present method can be used directly
in solution of the vorticity-stream function formulation of the two-dimensional incompressible Navier–Stokes equations
[15,18]. Here, without loss of generality, only the one- and two-dimensional problems are discussed. But, as it will be seen,
extension of the method to three-dimensional problems is straightforward. Moreover, the method is directly applicable to
the Laplace equation (i.e. the Poisson’s equation with zero forcing function), which is not the case for many other similar
methods.

For a d-dimensional domain X � Rd and its boundary oX, and for the given functions F : X! R and vb : oX! R, the Pois-
son’s problem with Dirichlet boundary condition is defined as
Xd

i¼1

o2v
ox2

i

¼ F in X; ð1Þ

vðSÞ ¼ vs on oX: ð2Þ
In Fig. 1, the X has been shown as a two-dimensional domain with irregular closed boundary oX, defined by a vector func-
tion S. To stress their differences, the irregular boundary oX will be noted as the ‘physical boundary’, while the corresponding
points on the uniform grid (marked by the bold circles in the figure), will be called the ‘numerical boundary’. As a necessary
condition for good representation of the physical boundaries, it is assumed that the vector function S is defined everywhere
on the boundary, with a resolution sufficiently greater than the uniform computational grid.

Inspired by the methods of Bueno-Orovio et al. [6], Bueno-Orovio and Perez-Garcia [5], Boyd [2] and then Bueno-Orovio
[4], the main idea is suitable extension of the forcing function F into D n ðX [ oXÞ, such that the extended function can be
transformed to the Fourier space. Then the solution of the extended problem will be found in the Fourier space, and finally
the desired solution of the original problem (defined in X) can simply be found by ignoring the solution in the D n ðX [ oXÞ.

Unfortunately, the Poisson’s problem with Dirichlet boundary conditions in the above formulation, cannot be solved di-
rectly by the methods of Boyd [2], Bueno-Orovio [4] or Bueno-Orovio et al. [6], at least for the following two reasons:

(1) Absence of an explicit method for implementation of the Dirichlet boundary conditions in these works. However, addi-
tion of a homogeneous solution (which can be obtained from the boundary element method or capacity matrix
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method) is suggested in [2] which is useful, when use of other than FFT-based methods is desired. In the
present method, where it is aimed to solve the problem solely by applying the FFT directly, decomposition of the prob-
lem into homogeneous and non-homogeneous parts cannot help implementation of the Dirichlet boundary
conditions.

(2) Absence of a method for transforming the Dirichlet boundary conditions from the physical boundaries to the numer-
ical boundaries. In the solution of a discretized problem on a regular grid, implementation of the Dirichlet boundary
conditions should be done via setting the dependent variable at some of the regular grid points, which we call them
the numerical boundaries. On the other hand, these boundary conditions are originally defined at the physical bound-
aries. Therefore, accurate implementation of the Dirichlet boundary conditions requires a method for appropriate
transformation of the boundary data [1,8,12,13].
Unfortunately, since the Fourier coefficients are global quantities and all the local information will be lost in transfor-
mation to the Fourier space, any local manipulation on the boundary data in the Fourier space is impossible. This is a
challenge for any FFT-based embedded boundary method, applying on the problems with Dirichlet boundary condi-
tions. For example, in [1] (where a method for boundary data transformation to the regular grid is proposed by the use
of an optimization process), the necessity of localized data manipulation leads to use of the boundary element method.

Our suggestion in this paper is to replace the original Poisson’s problem by an equivalent transient diffusion problem and
following an iterative procedure, in which, all the local manipulations on the boundary conditions are done in the physical
space, while the time advancement of the solution is obtained in the Fourier space. As it will be seen, this procedure results
in a spectral relaxation method, which is basically different from all the aforementioned methods.

The idea of replacing an elliptic equation with its equivalent unsteady diffusion problem has been used many times in the
literature (for example, see [9] for a finite difference formulation), but in the field of spectral methods, with the best knowl-
edge of the authors, the present algorithm can be supposed as a new methodology.

Like the other embedded/immersed boundary methods, it is expected that the method would be more efficient than the
conventional non-embedded boundary methods (like finite element methods or others); in dealing with complex and mov-
ing boundary problems with large mesh deformations or anywhere that the remeshing process is needed.

In the following sections, details of the mathematical formulation and our numerical experiments are presented. Section
2 describes mathematical formulation and our suggested iterative algorithm for one- and two-dimensional problems. More-
over, the saturation phenomenon (in implementation of the numerical boundary conditions) is explained and its effects on
the accuracy of the final solution are discussed. Section 3 is devoted to our numerical experiments on the one- and two-
dimensional problems, in which the flexibility of the method in dealing with fairly complex geometries and large amounts
of discontinuities at the boundaries are assessed and discussed. Finally, the conclusions and our suggestions about the pos-
sible future works could be seen in the Section 4.

2. Mathematical formulation

For embedded boundary solution of the Poisson’s equation (1) with Dirichlet boundary condition (2), after extension of
the forcing function F (which will be called f), it is suggested to replace the problem with an equivalent relaxation problem as
ou
ot
¼
Xd

i¼1

o2u
ox2

i

� f on D;

uðx; t ¼ 0Þ ¼ u0ðxÞ;
ð3Þ
in which the transient solution uðx; tÞ, is the equivalent (periodic extension) of vðxÞ, defined on the regular domain D. The
initial condition u0ðxÞ can be determined from the previous iteration or an initial guess. However, it must satisfy the Dirichlet
boundary condition (2); that is,
u0ðSÞ ¼ vs: ð4Þ
Now, since the functions uðx; tÞ and f ðxÞ are periodic: (i) the problem (3) (including the initial condition) can be trans-
formed into the Fourier space, and (ii) the time integration can be performed exactly in the Fourier space without need of
any numerical integration method (which means that fairly large timesteps can be chosen without any stability limitation).
Particularly, this feature of the method makes it to be competitive (from the rate of convergence viewpoint) in the family of
the relaxation methods.

In this section, the details of mathematical formulation of the method are discussed. At first, the method is fully described
for the one-dimensional problems and then, extension to the two-dimensional problems is provided. Full coverage of the
one-dimensional problems is due to the fact that the solution methodologies for one- and two-dimensional problems are
essentially identical. As will be seen, the main difference between these problems is the way of boundary data transforma-
tion, which is just a subsidiary step in the hierarchy of the whole algorithm. Moreover, in the one-dimensional problems, the
effects of discontinuities on the solution accuracy (which is one of the main difficulties for any spectral method), can be as-
sessed more easily and accurately.
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2.1. One-dimensional formulation

Consider the regular domain D ¼ fxjx 2 ½0;2p�g and a subdomain X ¼ fxjx 2�a; b½; 0 < a < b < 2pg on it as the irregular
domain, and its boundaries oX ¼ fa; bg. The Poisson’s problem with Dirichlet boundary conditions is defined on the irregular
domain X as
F

o2v
ox2 ¼ FðxÞ; x 2 X;

vðaÞ ¼ va;

vðbÞ ¼ vb:

ð5Þ
To discretize the problem, the domain D is covered by a uniform N-point grid, and to be a general embedded boundary prob-
lem, it is assumed that a and b are not coinciding with the regular grid points. The regular grid points are named xi; where
i ¼ 0;1;2; . . . ;N � 1. Furthermore, with a notation similar to Jomaa and Macaskill [13], it is assumed that xl 6 a 6 xlþ1, and
xr 6 b 6 xrþ1 and also xlþ1 � a ¼ alDx and b� xr ¼ arDx, where Dx ¼ 2p

N�1. Using these definitions, the numerical domain
and numerical boundaries are defined as X ¼�xlþ1; xr ½ and oX ¼ fxlþ1; xrg, respectively. Fig. 2 shows a portion of the regular
domain D, including the left physical and numerical boundaries.

Now the suggested iterative algorithm for solution of the problem (5) contains the following steps:

(1) Boundary data transformation; which means replacement of the Dirichlet boundary conditions (defined at the phys-
ical boundaries oX ¼ fa; bg) with some equivalent Dirichlet boundary conditions at the numerical boundaries
oX ¼ fxlþ1; xrg. It will be done using a second order interpolation.

(2) Definition of an equivalent relaxation (diffusion) problem on ðX [ oXÞ, which its final solution will be considered as an
approximation for the desired solution.

(3) Extending the forcing function F and the initial condition, from the irregular domain ðX [ oXÞ to the regular domain D,
smoothly and periodically. This step will be done in a way similar to Boyd [2] and Bueno-Orovio [4].

(4) Time advancement. This step itself contains: (i) transformation of the resulting (extended, periodic) problem into the
Fourier space (via a FFT), (ii) time integration in the Fourier space for a timestep Dt (using the exact solution of the
diffusion problem in the Fourier space), and (iii) transforming the results back into the physical space, using an Inverse
FFT (IFFT).Note that at the end of this step, the numerical boundary values are slightly changed.

(5) Going back to the step (1).

The above loop should be repeated until achieving the desired accuracy. Finally, by ignoring the solution on D n ðX [ oXÞ
and addition of the physical boundary conditions, an approximation to the solution for the problem (5) on the irregular
domain ðX [ oXÞ is obtained. To give a better idea of the algorithm, a flow diagram for the above steps is provided in
Fig. 3. Moreover, the steps (1)–(4) are discussed below in details.

2.1.1. Boundary data transformation
It is desired to find the equivalent numerical boundary conditions (that is, the values of vðxlþ1Þ and vðxrÞ), which can

replace the physical boundary conditions (that is, the values of va and vb), in the problem (5). During the last years, a wide
variety of boundary data treatments have been proposed and used in various EBM and IBM methods, including definition of
some virtual forcing functions [15,16] and the boundary condition manipulations [12,19,13,18]. In this article, a second order
interpolation, which is a combination of the methods of Sjogreen and Petersson [19] and Russell and Wang [18], has been
used. The method is described for the left boundary and can be followed easily for the other one.

The solution domain is considered from xlþ2 to xr�1 with its boundaries at xlþ1 and xr . Since it is desired to change the
original problem with an unsteady problem, the values of fxlþ2; xlþ3; . . . ; xr�2; xr�1g are known from the previous iteration
or the initial guess. Now, at the left numerical boundary, we have
ig. 2. Left physical and numerical boundaries for a one-dimensional irregular domain ðX [ oXÞ ¼ ½a; b� overlaid with a uniform N-point grid.



Fig. 3. The main steps of the solution algorithm.
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o2v
ox2

�����
lþ1

¼ Fðxlþ1Þ;
therefore, by a second order finite differencing,
o

ox
ov
ox

� �����
lþ1
¼ 2

alvlþ2 � ð1þ alÞvlþ1 þ va

alð1þ alÞDx2 :
After some algebra, for the left numerical boundary, we have:
vlþ1 ¼
� 1

2 alð1þ alÞDx2Fðxlþ1Þ þ va þ alvlþ2

1þ al
: ð6Þ
Similarly, an explicit relation for the right numerical boundary vr is obtainable. In this way, the problem (5) with Dirichlet
boundary conditions at the physical boundaries, is converted to a problem with Dirichlet boundary conditions at the numer-
ical boundaries as
o2v
ox2 ¼ FðxÞ; x 2 X; ð7Þ

vðxlþ1Þ ¼ vlþ1;

vðxrÞ ¼ vr: ð8Þ
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The following remarks should be noted about this step:

(i) Obviously, it is a second order interpolation between the physical boundary, the numerical boundary and the first grid
point inside the solution domain. As it will be emphasized in the numerical experiments section, presence of such an
interpolation, plays a smoothing role which can prevent triggering the high frequency modes (in the Fourier space),
especially for the problems with discontinuities at the boundaries.

(ii) Detail discussions about the effects of accuracy of the boundary condition implementation on the accuracy of the solu-
tion of the Poisson’s equation can be found in many references, for example [13]. However, it should be noted that in
the present method, as it is more explained in Sections 2.1.4 and 3.1, influences of the boundary data variation, during
each timestep, are more dominant than the errors of the interpolation method.

(iii) However, this is just a subsidiary step and always can be modified without any essential changes in the whole of the
solution algorithm.

2.1.2. Equivalent transient diffusion problem
After the boundary data transformation, the new Dirichlet boundary conditions are defined at some regular grid points

(that is, oX ¼ fxlþ1; xrg). However, since the oX is an internal region of the regular domain D, direct implementation of these
boundary conditions to an elliptic equation (where its solution is dependent on all the boundary values), needs some special
treatments. During the last years, to overcome this difficulty, the boundary element or spectral element methods were sug-
gested and used [1,8,18,2].

As an alternative approach, replacement of the elliptic equation by an equivalent parabolic one is suggested in this article.
Several previous experiences have shown that in the problems that an initial guess, close to the final solution, is at hand (e.g.
solution of the unsteady Navier–Stokes equations, where usually a good initial guess is available from the last timestep), this
strategy usually yields an efficient solution method.

Therefore, the equivalent parabolic problem is defined as
ov
ot
¼ o2v

ox2 � FðxÞ; x 2 ðX [ oXÞ;

vðx; 0Þ ¼ v0ðxÞ; x 2 X;
ð9Þ

vðxlþ1;; tÞ ¼ vl;

vðxr ; tÞ ¼ vr :
ð10Þ
To unifying our notations, the initial condition v0ðxÞ (defined in the interior X) together with the boundary conditions fvl; vrg
will be referred to as v0ðxÞ. Any steady solution of the problem (9) (that is, ov

ot ¼ 0), which also satisfies the boundary condi-
tions (10), can be considered as an approximation to the solution of the problem (7).

It should be noted that decision on the solution method for the problem (9) has not been taken up to now, and the prob-
lem can be solved by any numerical method. On the other hand, since the unsteady diffusion problems (with periodic bound-
ary conditions) have exact solutions in the Fourier space, attempts to find a spectral solution for this problem seems to be
justified. However, transformation of the problem (9) and its boundary conditions (10) into the Fourier space need appro-
priate extension of them to the regular domain D.

2.1.3. Extension to the regular domain
In the following of the methods suggested in [2,4,6], the forcing function FðxÞ and the initial condition v0ðxÞ should be

extended to the regular domain D periodically and smoothly, using an appropriate window function. Therefore, if we call
the extended forcing function and initial condition as f ðxÞ and u0ðxÞ, respectively, we have:
f ðxÞ ¼ FðxÞ on ðX [ oXÞ
0 otherwise

(
; u0ðxÞ ¼

v0ðxÞ on ðX [ oXÞ
0 otherwise

(
:

To our knowledge, use of the window functions in spectral solution of the Helmholtz and Poisson’s equations have been
proposed in [11] and then [20] for the first times. In these works, windowing of the forcing function is used in one dimension
(as a part of a domain decomposition algorithm). After about one decade, a more general discussion and classification was
appeared in [3] and then some more practical formulations and implementations were suggested in [2,4,6], which the main
difference between them is the method of definition of the window function.

In the language of Boyd [3], the problem (5) is a so-called ‘‘third kind” problem, which means that the forcing function
FðxÞ (and also the initial condition v0ðxÞ), are not defined on D n ðX [ oXÞ. For the originally smooth problems (on X [ oX),
where the exponential rates of convergence are potentially achievable, smoothness of the extended part plays the key role
in preserving the spectral rate of convergence of the final solution. According to the works of Boyd [3,2], Bueno-Orovio [4],
Bueno-Orovio et al. [6] and Bueno-Orovio and Perez-Garcia [5], although a general non-singular extension could not be
found for these ‘‘third kind” problems, the machine accuracies are possible; and for some particular problems, appropriate
extension methods can be developed to preserve the exponential convergence rates.
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In the present unsteady formulation, as it will be emphasized in the next section, accuracy of the boundary condition
implementation and the rate of convergence, depend on the smoothness of the window function, in addition to minimizing
the changes of the boundary values during timestepping. On the other hand, since the forcing function f ðxÞ is defined on X,
rate of change of the boundary values (on oX) and their extensions (on D n ðX [ oXÞ) depend on the spatial curvature:
Fig. 4.
final ac

Fig. 5.
from th
ou
ot
v

o2u
ox2 on D nX: ð11Þ
So, we arrive at the idea of linear extension of the initial condition (with o2u
ox2 � 0) in vicinity of the boundaries, to achieving the

minimum rates of change of the boundary values. In this way, smooth windowing of the forcing function and initial condi-
tion is done via multiplication of the linearly extended functions by an appropriate shifted error function.

The error function is shown in Fig. 4. In this figure, the outer smooth margin ðD0 þ D1Þ is produced by a D0 shifting in a
standard error function with a suitable rising distance D1.

In Fig. 5, the initial condition v0ðxÞ is extended linearly to the regular domain D, with a slope which is obtained from its
adjacent interior points in X, and then, it is multiplied by the error function of Fig. 4 to construction of the extended initial
condition u0ðxÞ.
The smooth outer margin for the left boundary. In addition to the decaying rate of the Fourier modes, it affects the acceptable timestep sizes and the
curacy.

Smooth extension of the forcing function and initial condition are obtained from multiplication of a linear extension (with a slope which is computed
e internal adjacent points) by a shifted error function.
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Our numerical experiments showed that for non-coinciding boundaries (that is, a and b are not coincided with the
regular grid), and for initial conditions with discontinuities at the boundaries (that is, when there are significant
jumps between the Dirichlet boundary conditions and initial condition at the boundaries), some instabilities can be
occurred as the solution proceeds. This is mainly because of the fast changes in the slope of the solution, near the
boundaries, from one timestep to the next one. However, our numerical experiments showed that these instabilities
are not serious (for originally smooth problems), and always will disappear with development of the solution. On the
other hand, to have s safe solution procedure, one can use just a simple error function (without the linear extension)
at first, and then switch on the linear extension process after sufficiently development of the solution (and disappear-
ing of the discontinuities).

Moreover, while the slope of the linear extension is obtained from the internal points (adjacent to the boundaries), the
exponential rates of convergence are obtainable for simple cases, and for more complex geometries, achieving the accuracies
close to the machine precision are possible.

As a final remark, it is worth mentioning that the linear extension process is designed to achieving more accurate solu-
tions and higher convergence rates. But a simple error function can be used satisfactorily with the advantage of simplicity in
the solution procedure. Therefore, all of the following two-dimensional numerical experiments are performed using this
simple windowing procedure.

2.1.4. Time advancement
Now, the problem is changed to
ou
ot
¼ o2u

ox2 � f ðxÞ; x 2 D;

uðx; t ¼ 0Þ ¼ u0ðxÞ; x 2 D;

uð0; tÞ ¼ uð2p; tÞ; o

ox
uð0; tÞ ¼ o

ox
uð2p; tÞ; . . .

ð12Þ
Due to periodicity of the forcing function f ðxÞ and the initial condition u0ðxÞ, this problem can be transformed to the Fourier
space, where it has an exact solution
ûkðtÞ ¼ ðûkÞ0 expð�k2tÞ þ ½expð�k2tÞ � 1� f̂ k

k2 : ð13Þ
In this relation f̂ k and ðûkÞ0 are the Fourier transforms of f ðxÞ and u0ðxÞ, respectively, and k is the wavenumber.
Since the exact solution (13) is available, time integration can be performed directly without need of any numerical

integration method. Consequently, there is not any stability limitation on the time integration sizes. On the other hand,
as it will be shown later, such time integration destroys the boundary conditions (8) and therefore, the time integration
sizes are restricted by the desired accuracy in implementation of the boundary conditions. Hereafter, to reflect this
restriction and also to emphasize the iterative nature of the solution algorithm, integration time in Eq. (13) will be re-
ferred to as Dt.

Timestepping. Time evolution of the linear diffusion problems with periodic boundary conditions in the Fourier space, ex-
pressed by Eq. (13), has some well-known features including:

(i) All the modes are uncoupled and the time evolution rate of each mode with k–0 is solely proportional to its initial
condition and the forcing function component in the same mode; and is exponentially proportional to the second
power of its wavenumber.

(ii) Time evolution of the zeroth mode (that is, for k ¼ 0), can be determined uniquely from the zeroth mode of the forcing
function
dû0

dt
¼ �f̂ 0:

On the other words, distribution of uðx; tÞ on D has an average which evolves (in time) with a rate, which is propor-
tional to the average of the forcing function.
(iii) Since Eq. (13) is written in the Fourier space, the diffusion process governed by this equation is inherently periodic in
the physical space (that is, uðx; tÞ calculated from ûkðtÞ will remain periodic on the domain D during time evolution).

As a consequence of the above issues, the following circumstances will be observed in time integration of the problem
(12) using Eq. (13):

(1) The Dirichlet boundary conditions vl and vr , which are implemented via the initial condition u0ðxÞ, will change during
the time integration. It yields lack of accuracy in implementation of the boundary conditions. In fact, one can see that
for say, Dt !1, just the zeroth mode and the effect of the forcing function will remain and the boundary conditions
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will not have any influence on the solution. Therefore, an accurate solution needs minimum changes of the boundary
values for each timestep.It can easily be shown that the relative change in the boundary conditions during the time-
step Dt, (for sufficiently small Dt), can be written as
ðûkD
Þ0 � ûkD

ðûkD
Þ0

¼ O½k2
DDt� ¼ O

2p
D

� �2

Dt

" #
; ð14Þ
where kD ¼ 2p
D is a typical wavenumber, which is dependent on the involved wavenumbers in the vicinity of the

boundaries. It will be shown formally, in the numerical experiments section, that the value of D depends on the values
of D0 and D1, as well as the sharpness of the solution field near the boundaries. According to Eq. (14), changes in the
boundary conditions, during the time advancement Dt, is first order with respect to the timestep, and is second order
with respect to the wavenumbers (which are involved in the boundaries neighborhood). Therefore, a strategy for min-
imizing variation of the boundary values, which is followed in this article, is to minimizing the involved wavenumbers
near the boundaries. This strategy leads to the linear extension as described in Section 2.1.3.

(2) Despite its periodicity, the solution does not remain necessarily zero outside of the ðX [ oXÞ during the time advance-
ment, especially near the boundaries of the regular domain D.

These issues are consequences of treatment of the numerical boundaries as the internal points and emphasizing on using
the Fourier modes in construction of the solution space. In summary, in spite of using the exact solution in the time integra-
tion, the timestep sizes are limited by the desired values of errors. However, this limitation is not so strict in comparison with
the stability limitations of the numerical time integration methods (as it will be shown in the Section 3).

On the other hand, our numerical experiments showed that after performing a number of the above iteration, solution
shows a kind of saturation, in which, without achieving the steady state solution, major part of the solution is remained
essentially unchanged during each timestep. A more comprehensive discussion about this phenomenon (which we called
it the saturation state) and its effects on the solution methodology is offered in the Section 3.1.

2.2. Extension to the two-dimensional problems

In extension of the method to the two-dimensional problems, as it is shown in Fig. 1, we assume that the physical bound-
ary oX is defined via an arbitrary curve Sðx; yÞ, where the boundary conditions are determined on it. In the method which is
followed here, presence of an analytic relation for Sðx; yÞ is not necessarily needed.

Solution of Eq. (1) with the boundary conditions (2) is sought on the irregular domain ðX [ oXÞ by extension of the prob-
lem to the regular domain D, which is overlaid by a uniform grid ðxi; yjÞ. Obviously, all the five steps in the Section 2.1 could
be followed, and among them, the most remarkable difference between the one- and two-dimensional problems is in the
boundary data transformation process, which will be explained in details in the subsequent section.

2.2.1. Transformation of the boundary data
For boundary data transformation, first of all, it is needed to have a precise definition for the numerical boundary points.

Among many possible definition methods (for example, see Johansen and Colella [12] for a fairly extensive discussion about a
variety of related practical issues, or Jomaa and Macaskill [13] for a categorization of the numerical boundary points), a meth-
od is followed here in similarity to analytical definition of the boundaries and discontinuities (for example, see [14] or [17]).

Consider some d-dimensional balls Cij (circles for two-dimensional problems), centered at ðxi; yjÞ and with radius rij,
where rij ¼minðDx;DyÞ. Now a grid point ðxi; yjÞ is a numerical boundary point, if and only if

(i) ðxi; yjÞ 2 ðX [ oXÞ.
(ii) Cij contains at least one point of D n ðX [ oXÞ.

Just like the one-dimensional problems, after determination of the numerical boundary points, the numerical boundary
conditions should be set. Among the different possible approaches, a combination of the methods proposed in [18,19] is fol-
lowed in this article (see Fig. 6).

By definition of a local curvilinear coordinate ðn;gÞ, as it is shown in Fig. 7, and transformation of Eq. (1) to this coordinate
system (in the vicinity of the physical boundary Sðx; yÞ), we have:
o2v
og2 þ j

ov
og
þ o2v

on2 ¼ Fðn;gÞ; ð15Þ
where j ¼ 1
R is the inverse of the local curvature radius of the physical boundary Sðx; yÞ.

Since a second order differencing is used at each timestep, a local grid with three nodes in depth is considered, similar to
Russell and Wang [18]. On the other hand, the present method is different from Russell and Wang [18] in the way that, just
the point ‘nb’ (that is, the numerical boundary), is on the regular grid. The other points should be obtained by interpolation
on the physical boundary data and the initial guess vðx; yÞ.



Fig. 6. Numerical boundary for a two-dimensional problem and uniform grid Dx ¼ Dy. The point ðxi; yjÞ is a numerical boundary point, since the circle Cij

contains some points in D n ðX [ oXÞ.

Fig. 7. The local curvilinear coordinate system ðn;gÞ, crossing the physical boundary and passing the numerical boundary point ‘nb’.
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Since o2v
on2

� �
pb

and vp are determined, from the boundary conditions and interpolation, discretization of Eq. (15) in the g

direction (similar to the one-dimensional problems), yields a relation for the numerical boundary conditions as
vnb ¼
d2

1

jd1 � 1

 !
Fpb �

o2v

on2

 !
pb

þ vpb½jd1ðd1 þ d2Þ � d2� � d1vp

d2
1ðd1 þ d2Þ

2
4

3
5: ð16Þ
Here, the subscripts ‘pb’ and ‘nb’ denote the physical boundary and the numerical boundary, respectively. It should be noted
that since Eq. (15), which is a Poisson’s equation in the orthogonal curvilinear coordinate, is used directly in derivation of Eq.
(16), this transformation procedure is suitable just for the Poisson’s and Laplace equations and for other kinds of elliptic
equations should be adapted appropriately.

After boundary data transformation, the other steps of the algorithm (presented in Fig. 3) could be followed. In this way,
by definition of an unsteady problem on the regular domain D and progressing the unsteady solution until achievement of
the steady state solution, an approximation for the solution of the problem (1) will be obtained.
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3. Numerical experiments

Our numerical experiments on the above algorithm are offered in this section. Firstly, the method is applied to a one-
dimensional problem in order to assessing the errors and showing its superiority (from the rate of convergence viewpoint),
in comparison with the usual relaxation methods. Moreover, the one-dimensional problems provide a good opportunity for
explanation of the saturation phenomenon, both in the physical and spectral spaces, and its effects on the convergence rate
and the final solution accuracy.

In the two-dimensional numerical experiments, it is shown that there are no essential differences in the error distribu-
tions of the one- and two-dimensional problems, and in either case the maximum errors occur inside the solution domain,
not at the boundaries. In particular, this is similar to the quadratic boundary conditions implementation in [13]; which can
be interpreted as suitability of the second order interpolation in boundary data transformation (at least for the converged
final solution).

3.1. One-dimensional problems

As a one-dimensional test case, Eq. (5) is considered with FðxÞ ¼ �1, and the boundary conditions vðaÞ ¼ va ¼ 1:5 and
vðbÞ ¼ vb ¼ 1:5, on the interval ðX [ oXÞ ¼ ½a; b� ¼ ½0:613;5:71�. This problem has an exact solution
Fig. 8.
the num
vðxÞ ¼ � x2

2
þ ðaþ bÞ

2
xþ ðva þ vbÞ

a� b
ðx� aÞ � ab

2
þ va: ð17Þ
By extension of this problem to the regular domain D ¼ ½0;2p�, and definition of a uniform 1024 point grid on it, we have
al ¼ ar ¼ 0:2. To observe the method capability in dealing with the discontinuities at the boundaries and the rate of conver-
gence (in presence of discontinuities), the initial condition is considered as vðx;0Þ ¼ �vðxÞ ¼ cosðxÞ on the interval
X ¼ �0:613;5:71½, which is too far from the final solution. Therefore, we are faced with discontinuities at both boundaries.
Fig. 8 shows the result of boundary data transformation on the initial condition, for the left numerical boundary, which is
smoothly extended to the regular domain D using a shifted error function. The following remarks should be noticed about
this figure:

(i) Obviously, the boundary data transformation process has a smoothing effect in the vicinity of the numerical boundary.
However, due to the remarkable difference between the physical boundary values and the initial guess, a jump is cre-
ated. Although such jumps trigger the high frequency Fourier modes during the FFT process, our experiments showed
that the solution can be remained alias-free, for rational timestep sizes. Moreover, these jumps enforced use of the
error function, instead of the linear extension in the extension process, for the first timesteps (as described in Section
2.1.3). However, by approaching the steady state solution, these jumps will die gradually.

(ii) After determining the numerical boundary condition at the point xlþ1, smooth extension of the initial condition is done
by the use of an error function, such that it approaches to the numerical boundary condition at the numerical bound-
ary point.
Boundary data transformation for the physical boundary condition vl ¼ 1:5. The boundary data is transformed from the physical boundary point a to
erical boundary point xlþ1.



With each selected timestep Dt, after some iterations, the solution leads to a situation which we call it the saturation
state. For a saturated solution, without achieving the steady state solution, major part of the solution field remains un-
changed during each timestep.

Although from viewpoint of many end users, only the final solution is in practical importance, in order to design an accu-
rate and fast algorithm a clear understanding about the saturation phenomenon seems to be essential. Therefore, to explain
the phenomenon, Fig. 9 illustrates changes in a saturated solution during a timestep Dt ¼ 0:5. The curve symboled by ‘�’ is
the solution before time advancement, where the numerical boundary conditions are implemented and the resulting field is
smoothly extended to the regular domain. To clarify the saturation phenomenon, the extension process is intentionally per-
formed via a simple error function. Transforming this field to the Fourier space, time integration and then taking back to the
physical space (as described in Section 2.1), resulted in the ‘r’ symboled curve. Apparently, most of the domain
ðX [ oXÞ ¼ ½0:613;5:71�, remained almost unchanged, while for the points around the boundaries, fairly large variations
can be observed. These curves will be repeated identically in the next iterations, while the timestep Dt is unchanged.

In fact, the saturation state is the final solution for a problem with variable boundary conditions with amount of
dBC � 2p

D

� �2
Dt. Conversely, a solution can be called saturated, when the effect of these variable boundary conditions and

the forcing function are completely diffused all over the solution field. With this respect, a converged solution can be defined
as a saturated solution in which the boundary condition variation meets a pre-assumed criteria (that is, dBC 6 �T, where the
�T is a desired threshold).

Some other aspects of the saturation phenomenon can be observed in the spectral space. Fig. 10 shows spectrum of the
kv̂kk and kf̂ kk (where k � k is the L2 norm), for a saturated solution before and after timestep Dt ¼ 0:001 (which resulted in
dBC � ð10�3Þ). Since the solution is saturated, these spectra will be repeated identically in the next iterations. Note that the
spectrum of the forcing function is scaled by 1

k2, in order to make easier comparison between the saturated solution and the
forcing function spectra.

According to Eq. (13), it is expected to have v̂k ! f̂ k

k2 for a sufficiently long time integration (that is,
P
ðDtÞ � t !1). In the

other words, all the initial modes experience exponential decaying until settling down on the forcing function, where in this
situation, all the Dirichlet boundary conditions are missed. In contrast, implementation of the boundary conditions causes
deviation of the solution spectrum from f̂ k

k2.
In Fig. 10, since the overall time advancement has been sufficient to achieving a saturated solution, a good coincidence

between the solution spectrum and the forcing function spectrum can be observed for high wavenumber modes (after
the point R). On the other hand, the time integration has not had any influences on the very small wavenumber modes,
as can be observed up to the point L. Meanwhile, the gap between L and R is a transient region which is under the influence
of Dirichlet boundary conditions (and therefore its spectrum is different from f̂ k

k2), and also its wavenumbers are large enough
to change due to the exponential decaying.

Having both a suitable convergence rate and an acceptable final accuracy, needs proper choosing of ðD0 þ D1Þ and Dt
simultaneously. However, in the practical applications the smooth margin ðD0 þ D1Þ can be chosen first (more or less intu-
itively, and also based on the uniform grid resolution), and then during the solution progress, suitable convergence rates are
affordable by appropriate choosing of the timestep sizes.



Fig. 10. Saturated solution in the Fourier space before and after the time integration. For the sake of clarity, the forcing function is scaled by 1
k2 .

F. Sabetghadam et al. / Journal of Computational Physics 228 (2009) 55–74 67
Various strategies can be followed for selection of the timestep sizes. One can simply choose a very small constant time-
step (say, Dt v 1

h, where h is the mesh size), and continue until achieving the desired solution. It is not difficult to see that this
strategy results in a very slow rate of convergence, which is somehow equivalent to the classical Gauss–Seidel (or even the
Jacobi) method. Therefore, in order to increasing the rates of convergence, variable timesteps are essential.

A simple but still effective scheme, which is used in the present work, is to choosing an initial large timestep (which can
be chosen based on the ratio of lengths of X and D), and then adapting the timesteps according to convergence of the Fourier
modes from the smaller to the larger wavenumbers, respectively. In this way, saturation of the Fourier modes is checked one
by one from the zeroth mode. At each step, the initial timestep will be divided by k2 when the mode ðk� 1Þ is saturated. The
factor 1

k2 is mainly chosen because of presence of the expð�k2tÞ term in the time evolution equation (13). All the following
numerical experiments have been performed using this strategy.

Fig. 11 shows convergence histories for the present method and two other classical relaxation methods, that is, the Jacobi
and the Gauss–Seidel methods. For the spectral embedded boundary solution, the smooth outer margins are chosen as
D0 ¼ 0:43 and D1 ¼ 0:26 and the initial timestep has been Dt0 ¼ 0:5. On the convergence curve of the present method,
the spikes (such as the points A and B) are noticeable, which have been generated due to the timestep changes. Except
for the point A, where the timestep changing has been done without achieving the saturation state (to show the effect of
Fig. 11. Convergence history of the present method in comparison with two other classical relaxation methods. Except for the point A, the other timestep
changes have been done in the saturation states.
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timestep on the convergence rate); all the other timestep changes have been done after saturation (which are distinct by
reductions in the curve slope).

In spite of using the above simple timestep adaptation algorithm, an obvious superiority of the method (from the conver-
gence rate viewpoint), is observable. However, still higher convergence rates are achievable by using more complicated
timestep adaptation algorithms. For the present numerical experiment, the solution procedure has been terminated at
Dtfinal ¼ 0:0013 with the maximum error �max ¼ 8:76	 10�5.

For such simple one-dimensional problem, due to presence of the exact solution (that is, Eq. (17)), distribution of the rel-
ative error on the interval ðX [ oXÞ is attainable (see Fig. 12). Apparently, the error distribution has its maximum in the mid-
dle of the interval, while the minimum errors are generated at the boundaries. Particularly, this situation is the same as
quadratic boundary condition implementation in [13], and therefore can be interpreted as suitability of the second order
interpolation for the boundary data transformation.

As it is pointed out earlier, accuracy of the boundary condition implementation (in the final solution), depends on the final
timestep sizes. This dependency is illustrated in Fig. 13, where the maximum error values, that is, the errors in the center of
the solution interval, is plotted versus different values of Dtfinal. As one can see, the maximum errors are OðexpðADtfinalÞÞ, for
Fig. 12. Relative error on the regular domain D. Outside the embedded numerical domain ðX [ oXÞ, the error is essentially zero.

Fig. 13. Error distribution for a more accurate solution of the problem of Fig. 12, with Dtfinal ¼ 0:0001. More accurate solutions (close to the machine
accuracy) are attainable with more iterations.
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some enough small values of Dtfinal. The coefficient A is a constant which is dependent on the ðD0 þ D1Þ, as well as sharpness
of the solution in the vicinity of the boundaries. For the above numerical experiments, it has been obtained as A � Oð5Þ (see
Fig. 14).

It is worth mentioning that, like the other relaxation methods, the present algorithm needs more iterations to achieving
more accuracy. However, to show capability of the method in achieving arbitrary accuracies, error distribution for a more
converged solution (with Dtfinal ¼ 0:0001), is presented in Fig. 13. As it can be seen, the errors are fairly acceptable for many
applications.

3.2. Two-dimensional problems

As the first two-dimensional numerical experiment, the method is applied on a unit circle C, centered at ðxc; ycÞ ¼ ðp;pÞ,
and placed in a ð2p	 2pÞ box as the regular domain D. The physical boundary points are defined on NPB ¼ 4096 points, and
the cubic spline interpolation is used wherever the midpoint data are needed. The physical and the numerical boundaries for
a ð256	 256Þ uniform grid are shown in Fig. 15.

At first, to see the effect of boundary data transformation on smoothness of the resulting numerical boundary conditions,
a constant boundary condition vðSðx; yÞÞ ¼ 1 is transformed to the numerical boundary by the use of Eq. (16). In addition, in
Fig. 14. The maximum error (that is, the error in the middle of the solution domain), versus final timestep sizes, compared with an exponential function.

Fig. 15. Physical and numerical boundaries for a unit circle and a uniform ð256	 256Þ grid.
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the sake of clarity, the initial condition is assumed to be zero (that is, v0ðSðx; yÞÞ ¼ 0). In Fig. 16, the resulting numerical
boundary conditions are shown for some different resolutions of the regular grids.

Apparently, contrary to the physical boundary conditions, the values of numerical boundary conditions are variable along
the numerical boundary nodes. Mainly, this is a consequence of variation of d1 in Eq. (16). Therefore, increasing the resolu-
tion of the regular grid, which decreases both the values of d1 and its variations, reduces variation of the numerical Dirichlet
boundary conditions and also approach them to the physical boundary conditions (in this case, a constant value
vðSðx; yÞÞ ¼ 1), as can be seen in Fig. 16.

It can be concluded that some discontinuities (at the numerical boundaries), can appear as a result of the boundary data
transformation. However, as it will be pointed out in the following discussions, the solution accuracy and the rate of conver-
gence are not influenced seriously by these discontinuities.

After the boundary data transformation and definition of an unsteady problem, the initial condition together with the
forcing function should be extended to the domain D, smoothly and periodically. In this context, a crucial question is the
effects of the above discontinuities (at the numerical boundary points), on the FFT process and then on the global rate of
convergence. To probe this, similar to the method which was proposed in [2] and then followed in [4], the scatter diagrams
of the absolute values of Fourier coefficients are shown in Fig. 17, for a saturated solution before and after timestep Dt.

In the left plate, which is the solution spectrum before time advancement, due to the presence of discontinuities at the
numerical boundaries, the exponential convergence can be seen just for the low wavenumber modes, while for the higher
wavenumbers, a fairly large deviation from the exponential decaying is observable. Right side of the figure, shows the same
field after the timestep Dt ¼ 0:01. Obviously, as a result of exponential decaying in time, except for a number of modes
(which are under the influence of the extended forcing function spectrum), an exponential convergence is observable for al-
most whole of the wavenumbers. However, for the above observations it is worth mentioning that:

(1) In the above experiments (one- and two-dimensional), the discontinuous boundary conditions were selected inten-
tionally to show the ability of the method in dealing with these kinds of problems. However, our experiments have
shown that for continuous problems, perfect spectral rates of convergence are affordable.

(2) Fig. 17 is plotted for a fairly coarse regular grid (that is, ð64	 64Þ), which as mentioned earlier, causes more discon-
tinuities. However, in the practical problems where the higher resolution grids are in common use, these discontinu-
ities do not produce serious problems (as will be seen later in our following numerical experiments).

In summary, although the exponential rate of convergence can be missed (for discontinuous problems and low-resolution
grids), however, the spectral method can work properly, with larger values of errors (in comparison with the spectral accu-
racy), as it is also notified in [2].

To check the method accuracy in the two-dimensional problems, the forcing function Fðx; yÞ ¼ �2 cosðxþ yÞ together
with the physical boundary conditions vðSÞ ¼ cosðxs þ ysÞ are considered on the circle C, which has an exact solution
vðx; yÞ ¼ cosðxþ yÞ.

Like as the one-dimensional problems, to observe the rate of convergence and capability of the method in dealing with
discontinuities, the initial condition is considered too far from the final solution as v0ðx; yÞ ¼ 1. The initial condition and
Fig. 16. Transformed Dirichlet numerical boundary conditions for a constant physical boundary condition vðSðx; yÞÞ ¼ 1 and constant initial condition
v0ðx; yÞ ¼ 0 on various regular grid resolutions. Since the number of numerical boundary points are different for different grid resolutions, they are shown
just for 25 boundary points, corresponding to the coarsest grid ð32	 32Þ.







Fig. 21. Right: physical and numerical boundaries for a four-leaf shape body, placed in a regular ð256	 256Þ grid. To have a clear visualization, just a
number of selected boundary points are shown. Left: contour plot for the final, converged solution with the same boundary conditions and the forcing
function as in Fig. 19. The smooth outer margin is removed and the physical boundary conditions are added to the solution.

Fig. 22. The error distribution for the four-leaf body of Fig. 21. Left: absolute values of the relative errors for the boundary points. Right: errors in the
interior points. In contrary to Fig. 20, the errors are projected on the ðx ¼ pÞ plane.
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corners on the physical boundaries (except for the 90� angle corners, for which definition of the problem (1) is paradoxical
[14]), it is just needed to change the boundary data transformation algorithm to covering the problem.

4. Conclusions and future works

A spectral embedded boundary method for solution of the Poisson’s equation with Dirichlet boundary conditions and
arbitrary (non-zero, as well as zero) forcing functions has been proposed in this paper. The suggested algorithm, can be seen
as a spectral relaxation method which is designed to benefiting from advantages of the FFT (its fastness, suitability for par-
allel programming, and so forth), in the solution of the linear elliptic equations.

The method has been formulated and implemented on the one- and two-dimensional problems with an emphasis on the
problems with discontinuous initial conditions. Numerical boundary (points and conditions) are defined on the regular grid
points, as a necessity of accurate implementation of the Dirichlet boundary conditions, and the boundary data transforma-
tion is done using a second order interpolation. Suitability of the interpolation method has been shown via some numerical
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experiments, with arguing that the minimum errors are occurred at the boundaries. Comparison of the method with some
other classical relaxation methods has shown higher rates of convergence, which is a result of absence of numerical time
integration methods (as the main source of numerical instabilities in the unsteady problems) in the algorithm. Flexibility
of the method, in dealing with fairly complex geometries, and its ability in achieving desired accuracies, have been demon-
strated via some numerical experiments on a four-leaf shape geometry.

Like some other relaxation methods, the present method can be used as the smoothing step of multigrid methods, where
it has the obvious advantage of straightforward implementation of prolongation and restriction (i.e. the zero padding and
filtering in the Fourier space). Therefore, development of such a multigrid method is considered as one of our first plans
for future works in extension of the method.

As an alternative boundary data transformation method, some immersed boundary concepts (e.g. definition of local forc-
ing functions and implementing them using the Dirac delta function), can be used. In this way, an iterative method (instead
of the unsteady diffusion problem), should be followed for setting of these new forcing functions.

On the other hand, extension to the three-dimensional problems and use of the method in solution of the incompressible
Navier–Stokes equations in two- and three-dimensions are some other possible future works.
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